ABCB19‐mediated polar auxin transport modulates Arabidopsis hypocotyl elongation and the endoreplication variant of the cell cycle
نویسندگان
چکیده
Elongation of the Arabidopsis hypocotyl pushes the shoot-producing meristem out of the soil by rapid expansion of cells already present in the embryo. This elongation process is shown here to be impaired by as much as 35% in mutants lacking ABCB19, an ATP-binding cassette membrane protein required for polar auxin transport, during a limited time of fast growth in dim white light beginning 2.5 days after germination. The discovery of high ectopic expression of a cyclin B1;1-based reporter of mitosis throughout abcb19 hypocotyls without an equivalent effect on mitosis prompted investigations of the endoreplication variant of the cell cycle. Flow cytometry performed on nuclei isolated from upper (growing) regions of 3-day-old hypocotyls showed ploidy levels to be lower in abcb19 mutants compared with wild type. CCS52A2 messenger RNA encoding a nuclear protein that promotes a shift from mitosis to endoreplication was lower in abcb19 hypocotyls, and fluorescence microscopy showed the CCS52A2 protein to be lower in the nuclei of abcb19 hypocotyls compared with wild type. Providing abcb19 seedlings with nanomolar auxin rescued their low CCS52A2 levels, endocycle defects, aberrant cyclin B1;1 expression, and growth rate defect. The abcb19-like growth rate of ccs52a2 mutants was not rescued by auxin, placing CCS52A2 after ABCB19-dependent polar auxin transport in a pathway responsible for a component of ploidy-related hypocotyl growth. A ccs52A2 mutation did not affect the level or pattern of cyclin B1;1 expression, indicating that CCS52A2 does not mediate the effect of auxin on cyclin B1;1.
منابع مشابه
SUPPRESSOR OF PHYTOCHROME B4-#3 Represses Genes Associated with Auxin Signaling to Modulate Hypocotyl Growth.
Developing seedlings are well equipped to alter their growth in response to external factors in order to maximize their chances of survival. SUPPRESSOR OF PHYTOCHROME B4-#3 (SOB3) and other members of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) family of transcription factors modulate the development of Arabidopsis (Arabidopsis thaliana) by repressing hypocotyl elongation in young seed...
متن کاملThe ATP-Binding Cassette Transporter ABCB19 Regulates Postembryonic Organ Separation in Arabidopsis
The phytohormone auxin plays a critical role in plant development, including embryogenesis, organogenesis, tropism, apical dominance and in cell growth, division, and expansion. In these processes, the concentration gradient of auxin, which is established by polar auxin transport mediated by PIN-FORMED (PIN) proteins and several ATP-binding cassette/multi-drug resistance/P-glycoprotein (ABCB/MD...
متن کاملLocalized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis.
Adventitious roots emerge from aerial plant tissues, and the induction of these roots is essential for clonal propagation of agriculturally important plant species. This process has received extensive study in horticultural species but much less focus in genetically tractable model species. We have explored the role of auxin transport in this process in Arabidopsis (Arabidopsis thaliana) seedli...
متن کاملBlock of ATP-binding cassette B19 ion channel activity by 5-nitro-2-(3-phenylpropylamino)-benzoic acid impairs polar auxin transport and root gravitropism.
Polar transport of the hormone auxin through tissues and organs depends on membrane proteins, including some B-subgroup members of the ATP-binding cassette (ABC) transporter family. The messenger RNA level of at least one B-subgroup ABCB gene in Arabidopsis (Arabidopsis thaliana), ABCB19, increases upon treatment with the anion channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB)...
متن کاملphot1 Inhibition of ABCB19 Primes Lateral Auxin Fluxes in the Shoot Apex Required For Phototropism
It is well accepted that lateral redistribution of the phytohormone auxin underlies the bending of plant organs towards light. In monocots, photoreception occurs at the shoot tip above the region of differential growth. Despite more than a century of research, it is still unresolved how light regulates auxin distribution and where this occurs in dicots. Here, we establish a system in Arabidopsi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 85 شماره
صفحات -
تاریخ انتشار 2016